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Note: Each contestant is credited with the largest sum of points obtained for three
problems.

1. Squareland is a 6 × 6 grid, where each 1 × 1 cell is either a kingdom or a dis-
puted territory. There are 27 kingdoms and 9 disputed territories in Squareland.
Claimants to each disputed territory are those kingdoms that share an edge or a
vertex with that territory. Is it possible that for every pair of disputed territories
the numbers of claimants to each of them are different? (4 points)

2. What is the maximum number of distinct integers that can be written in a row
such that the sum of any 11 consecutive numbers is either 100 or 101? (4 points)

3. Let ABCD be a rhombus. Suppose APQC is a parallelogram such that the point
B is inside APQC and the side AP is equal to the side of the rhombus. Prove that
B is the point where altitudes of triangle DPQ intersect, i.e. B is the orthocentre
of triangle DPQ. (4 points)

4. Let n be an integer such that the equation x2 + y2 + z2 − xy − yz − zx = n has
a solution in integers x, y, z. Prove that the equation x2 + y2 − xy = n also has a
solution in integers x, y. (5 points)
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5. There are two identical draughts in the squares a1 and c3 of an 8× 8 chessboard.
Petya and Vasya make moves in turn under the following rules:

Petya makes the first move.
Each player can choose any draught and move it horizontally to the right
or vertically upwards any number of squares.

The aim of each player is to place a draught in the square h8. Which player can
always win for sure no matter how his opponent plays? (There may be only one
draught in a square and draughts cannot jump over each other.)
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(5 points)


